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Learning outcomes: 

 

1. Random variables are the foundations of statistics 

2. Random variables have an expected value and a variance and standard deviation 

3. Date can form a frequency distribution 

4. A normal distribution frequently describes many examples of variance in populations of 

data 

5. The arithmetic of the normal distribution allows powerful predictions of ranges etc. 

6. Other distributions are important in finance, especially the lognormal distribution 

7. Correlation describes how variables might move together 
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1 Introduction 

 

Evaluation of risk often requires a statistical approach and this reading covers the basics 

required for risk management. 

 

Probability refers to a degree of likelihood that something will happen, or that variables will 

take different values. In finance we are usually concerned with the probabilities associated 

with numerical ranges of important financial values like exchange rates, portfolio returns or 

the value of capital at the end of the next period. These are said to be random variables. 

This does not necessarily mean that they are completely unpredictable, but simply that, as of 

now, we don’t know exactly what their future values will turn out to be. 

 

A random variable is a variable whose value depends on the results of a random event. 

 

A random event - for these purposes - is an event for which we know the following data: 

 

 All possible ‘outcomes’ of the event that can happen. 

 The probability of each ‘outcome’. 

 

Note that only one outcome of a random event can occur at a time. So if we want to know 

the probability of one of a number of (non-sequential) outcomes occurring in a random 

event, then this is just the sum of the probabilities of each outcome. (For example, the 

probability of rolling a one on a die is 1/6.  The probability of rolling a two is also 1/6.  The 

probability of rolling either a one or a two is 1/6 + 1/6 = 1/3.)  This is an important concept to 

bear in mind when dealing with continuous random variables – see below. 

 

There are two additional concepts to understand regarding random events: 

 

 the expected value of a random event, the mean; and 

 the variance and standard deviation of a random event. 

 

We will initially be looking at the arithmetic mean: the average value that would occur if the 

random variable was observed many times. The arithmetic mean of n observations: x1, x2 … 

xn is: 
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The population variance is the mean of the squares of the differences between the 

arithmetic mean E[X] and each observation, xi. The variance of n observations: x1, x2 … xn 

is: 
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Where the variance is calculated from a sample rather than from the complete population, 

the formula is modified. The denominator becomes n – 1 rather than n, so that the variance 

calculated from the sample then provides an unbiased estimate for the whole population 

variance: 
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The standard deviation is the square root of the variance. 

 

Example 1: Calculating the mean, variance and standard deviation 

Calculate the arithmetic mean, variance and standard deviation for the following population 

of random variables: 

 

4, 2, 6, 1, 3, 8, 7, 2, 4, 10 

 

Assume the population above is the total population. 

 

Solution 

The mean is just the arithmetic average of the numbers. To calculate the variance, we first 

take the deviations of each number from the mean, square them, add them, and finally 

divide by the number of observations, in this case 10. The standard deviation (often 

abbreviated to STD or σ) is the square root of the variance. 

 

Exhibit 1: Calculating mean, variance and standard deviation 

 
 

The mean and the variance are obtained by dividing the sum for x and [x –E(x)]2 by the total 

population, 10. 

 

The standard deviation (STD, σ) is the square root of the variance. 

 

Note that the sum [x – E(x)] is zero as the sum of the deviations from the mean should 

equate to zero. 

x x-E(x) [x-E(x)]2 

4 (0.70) 0.49 

2 (2.70) 7.29 

6 1.30 1.69 

1 (3.70) 13.69 

3 (1.70) 2.89 

8 3.30 10.89 

7 2.30 5.29 

2 (2.70) 7.29 

4 (0.70) 0.49 

10 5.30 58.09 

Sum              47 0.00 78.10 

Mean E(x)    4.7 Variance 7.81 

 STD () 2.79 
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It is important to differentiate between random variables that are independent and those 

which are not independent. 

 

Independent random variables are ones which do not affect each other.  Knowing the value 

of one of the random variables does not provide any additional information about the other 

variable.  (For example, if I were nimble-fingered I might simultaneously roll a die and toss a 

coin.  Knowing the result of rolling the die - knowing for example that I had rolled a six - 

would not provide any additional information about the likelihood of getting heads or tails 

with the coin.) 

 

An important property of normal random variables is that the sum of independent normal 

random variables is also a normal random variable. That is, if X1 and X2 are independent 

normal random variables with means µ1 and µ2 and with standard deviations σ1 and σ2, then 

X1 plus X2 is also normal with mean: 

 

E[X1 + X2] = E[X1] + E[X2] = µ1 + µ2 

 

And variance: 

 

Var(X1 + X2) = Var(X1) + Var(X2) = σ1
2 + σ2

2  

 

We will return to the properties of independent normal random variables later, after 

introducing the concept of the normal probability distribution function. 

 

2 Probability and distributions 

 

It is often useful to organise or arrange a body of data into a frequency distribution. This 

breaks up the data into groups or classes and shows the number of observations in each 

class. A histogram is a bar graph of a frequency distribution, where classes are 

conventionally measured along the horizontal axis and the related frequencies up the vertical 

axis. Given that in finance we deal a lot with data: prices, returns and values, this systematic 

way to describe the statistical properties of data series is very useful. 

 

A relative frequency distribution is obtained by dividing the number of observations in each 

class by the total number of observations. The sum of the relative frequencies is equal to 1. 

 

The histogram below is a probability relative frequency histogram of 5,000 numbers, ranging 

from roughly –3 to +3 with a tendency for the numbers to be near zero. The numbers are 

placed in boxes or bins, of width 0.25. Thus the height of the histogram in each bin is the 

number of observations in that bin as a proportion of the total 5,000. 
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Exhibit 2: Relative frequency distribution 

 
 

What would happen if we increased the number of observations from 5,000 to infinity? In the 

present example, you would find that the distribution curve becomes smooth, illustrated 

below. 

 

Exhibit 3: Continuous relative frequency distribution 

 
 

The smoothness of the distribution curve is because the random variable concerned can 

take any value, i.e. is a continuous random variable. Many kinds of random variables are 

essentially discrete in nature: the number of breakdowns in a car fleet per year, average 

heights of a population and so forth. For discrete variables, the distribution function will be 

stepped rather than smooth. 

 

3 Normal distribution 

 

The continuous distribution curve illustrated above is a special kind of continuous probability 

distribution function called a normal distribution. Its density function is bell shaped and 

symmetrical. The normal distribution can be defined by only two parameters, namely the 

mean and variance, because of its uniformity. 

 

The maximum value of the normal distribution curve occurs when the random value, x, is 

equal to the mean, µ, the curve being symmetrical about the mean. The spread of the 

probabilities is determined by the variance. A small variance produces a sharp peak at x = µ, 

consequently most of the area under the normal curve is close to µ. A large variance, on the 
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other hand, produces a smaller, more rounded bulge at x = µ. The area under this normal 

curve is less concentrated about µ. 

 

Exhibit 4: Two normal relative frequency distributions 

 
 

The probability of the normally distributed random variable being below the mean is equal to 

the probability of the random variable being above the mean (both of these probabilities 

being 50%). The curve extends without limit in both directions but, as mentioned above, 

most of the area (probability) is clustered around the mean: 

 

 68.26% of the area (probability) under the normal curve is included within one standard 

deviation of the mean, within µ ± 1σ; 

 95.44% within µ ± 2σ; and 

 99.74% within µ ± 3σ. 

 

The continuous probability distribution is a standard normal distribution if the mean is 0 and 

the standard deviation is 1. Rather than explain this in longhand every time that we describe 

a normal distribution, we can abbreviate it to the format φ (µ,σ).  The symbol for a normal 

distribution function is φ. We use the notation φ (0,1) later in this reading to signify a 

standardised normal distribution. 

 

Any normal distribution (X scale in Exhibit 5) can be transformed into a standard normal 

distribution by letting µ = 0 and expressing deviations from µ in standard deviation units (the 

horizontal z scale in Exhibit 5). 

 

To find the probabilities (areas) for statistical problems involving the normal distribution, we 

first convert the X value into its corresponding z value, as follows: 

 

σ

μX
z


  

 

We can look up the z value in a standard normal distribution table. The z value is the number 

of standard deviations from the mean. 

 

The following exhibit shows how a normal distribution function can be transformed into a 

standard normal distribution function. 
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Exhibit 5: Normal curve, standard normal curve 

 
 

The table below shows a number of z values and the related probabilities of a result between 

the z value and the mean. 

 

Exhibit 6: Probabilities (area) for the standard normal distribution 
 

z Probability 

0.0 .0000 

0.5 .1915 

1.0 .3413 

1.5 .4332 

2.0 .4772 

2.5 .4938 

3.0 .4987 

 

The following diagram shows the probability for one z value. 

 

For example if z = 2.0, the shaded area is 0.4772 out of the total area of 1.0000. 

 

Exhibit 7: Highlighting the area (probability) between µ and z for standard normal 

curve. 
 

 
 

Note: Because the standard normal distribution function is symmetrical, the area between z 

= 0 and z = –2 will equate to the area between z = 0 and z = +2. 
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Example 2: Calculating probabilities using the standard normal distribution function 

Suppose that X is a normally distributed random variable with µ = 16 and σ = 2, and we want 

to find the probability of X assuming a value between 14 and 18. 

 

Solution 

 

We first calculate the z values corresponding to the X values of 14 and 18 and then look up 

these values in a standard normal distribution table. 

 

1
2

1618

σ

μX
zand1

2

1614

σ

μX
z

2

2

1
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Looking at table 1, for z = 1, we get 0.3413. z = ±1 equals 2 x 0.3413 or 0.6826, this means 

that the probability of X assuming a value of between 14 and 18, or P(14 < X < 18) is 

68.26%. 

 

Example 3: Predicting rainfall using the standard normal distribution function 

Suppose the annual rainfall in a city has a normal distribution with mean 40 inches, standard 

deviation 5 inches. What is the probability that the city will get between 40 and 45 inches of 

rain next year? 

 

Solution 

We want P(40 < z < 45) where z is the annual rainfall: 

 

1
5

4045

σ

μX
zand0

5

4040

σ

μX
z

2

2
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Thus we want the area (probability) between z1 = 0 and z2 = 1. Looking up z = 1 in Table 1, 

we get 0.3413. As z = 0 equates to a probability of zero, the probability of the annual rainfall 

being between 40 and 45 inches next year is 34.13%. 

 

The mean is also known as a measure of ‘central tendency’. There are five such measures 

in total but the mean is the most popular followed by the median, which is the value such 

that there are an equal number of observations above the median as below. For a normal 

distribution – or any symmetric distribution – the mean and median are the same, but this is 

not so for asymmetric distributions. 

 

In the previous section, the concept of an independent random variable was introduced. If 

two random variables do not affect each other, they are independent. 

 

They have the following important features: 

 

Mean: 

 

E[X1 + X2] = E[X1] + E[X2] = µ1 + µ2 
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And variance: 

 

Var(X1 + X2) = Var(X1) + Var(X2) = σ1
2+ σ2

2 

 

Suppose a random variable follows a standard normal distribution and that the change in its 

value in one year is φ (0,1)1. What is the probability distribution of the change in the value of 

the variable over two years, assuming that the two probability distributions are independent 

and otherwise identical? 

 

The change in two years is the sum of two standard normal distributions, each of which has 

a mean of zero and a standard deviation of 1. When we add the two normal distributions, the 

result is a normal distribution in which the mean is the sum of the means and the variance is 

the sum of the variances. 

 

The mean of the change over two years in the variable we are considering is therefore zero, 

and the variance of this change is 2.0. The probability distribution of the change in the 

variable over two years defined by the mean and standard deviation is therefore φ (0,√2). 

 

A similar argument can be used to calculate the probability distribution of the change in the 

random variable over six months assuming that the change in the first six months is the 

same as the next six months and the probability distribution for the year is φ (0,1). The 

standard deviation of the change is √0.5 so that the probability distribution for the change in 

the value of the variable during six months is φ (0,√0.5).  

 

Looking at a very short period of time δt, the probability distribution for the change in the 

value of the variable is φ (0,√δt) if the probability distribution for the year is φ (0,1).  (For the 

non-mathematicians among you, δ is the symbol for a very small change in a variable; and ∆ 

the symbol for a bigger, generally measurable, change.)   

 

The reason for the square roots is that variances of successive time periods for independent 

and identical random variables are additive but the standard deviations are not. 

 

Our calculations above made two important assumptions: 

 

1. We assumed that the two distributions for successive periods of time were independent.  

This assumption is known as a "random walk". 

2. We assumed that the distributions were otherwise identical.  This includes a key 

assumption that there are no changes in the standard deviations between the successive 

periods. 

 

 

 

 

                                                 
1
 Mean of 0, standard deviation of 1. 
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4 Central limit theorem 

 

The normal distribution is an important statistical distribution, not least because the sum of a 

large number of independent random variables, all having the same probability distribution, 

will itself be a normal random variable. As the sample size is increased, the sampling 

distribution of the mean approaches the normal distribution regardless of the shape of the 

parent population. The approximation is sufficiently good for values of n greater than or 

equal to about 30. 

 

This is the central limit theorem, or ‘law of large numbers’. 

 

So as the sample size becomes very large, the distribution of the mean will be approximately 

the same as the normal distribution. 

 

The central limit theorem is one of the ways of proving that share prices are lognormal. We 

discuss lognormal distributions in the next section. 

 

5 Non-normal distributions 

 

In real life, populations are distributions are seldom distributed normally, and other models 

have to be used to interpret and predict their behaviour.  The easiest of these to get to grips 

with are lognormal, leptokurtotic and platykurtotic distributions.   

5.1 Lognormal distributions 

The probability density functions may not be symmetric; in other words, a random variable 

may not be normally distributed. For instance, the probability density function may have a 

longer tail on either side. 

 

The exhibit below is a lognormal distribution. A random variable, X, has a lognormal 

distribution if the natural logarithm of the random variable, Y = ln(X), is normally distributed. 

 

Note the longer tail on the right hand side, with a disproportionate probability of getting 

higher values. This is a positively skewed density. 

 

Lognormal distributions are often used in financial modelling. This is because the lognormal 

distribution is an attractive one to assume in relation to share prices because it has a range 

of 0 to + infinity. This is exactly the theoretical range of asset prices because they cannot be 

negative but could attain very high positive values. 
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Exhibit 8: Distribution of a random variable which is lognormally distributed 

 
 

If the ratio of the price of the random variable at time t in the future to the present price is 

independent of the past history of prices, and has a lognormal probability distribution with 

parameters µt and σt
2 the series of prices for the random variable are said to follow a 

generalised Wiener process.  This is one of the key assumptions in the Black Scholes option 

pricing model;  the practical point for the treasurer is that implied, i.e. forward-looking 

volatilities are often quoted in the market on a lognormal basis, and this affects the 

calculation of VaR amounts. 

5.2 Symmetric, but fatter or thinner than the normal 

Even if the density is symmetric, it may not conform to the normal shape. Empirical 

distributions of returns often have fatter tails than predicted by the normal distribution, 

meaning a higher probability of getting very large or very small returns. They also tend to be 

more peaked around the centre. So you could describe them as fat tailed and peaky. The 

technical term is ‘leptokurtotic’. 

 

The exhibit below plots one particular leptokurtotic distribution against a normal distribution 

with the same variance. 

 

Exhibit 9: Leptokurtotic density versus the normal distribution 
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Another type of kurtosis (i.e. the degree of difference from a normal distribution) is 

‘platykurtotic’, which refers to a wide curve at the mean and very short tails. 

 

6 Simple regression analysis 

 

Suppose we have two random variables, x and y. They have their own arithmetic means, 

respectively µx and µy, and standard deviations, respectively σx and σy. 

 

They will also have a co-variance, defined by: 

 

σxy = E[(x – µx)(y – µy)] 

 

If positive deviations (x – µx) for random variable x tend to be associated with positive 

deviations (y – µy) for random variable y, or negative with negative, then σxy will be positive, 

and we say that x and y are positively correlated. If, on the other hand, the positive 

deviations for x are associated with negative deviations for y, then x and y will have a 

negative co-variance and we say that x and y are negatively correlated. 

 

If you want a measure of the closeness of fit of the proposed regression line, one statistical 

measure to use is the co-efficient of correlation, which is defined by: 

 

correlation co-efficient 
yx

xy
ρ

σσ

σ

  

 

The most important property of the correlation co-efficient is that its value is always between 

–1 and 1. If x and y are statistically independent, their correlation co-efficient is zero. If ρ > 0 

this means that the two variables are positively correlated so the regression line slopes 

upwards. If ρ < 0, the two variables are negatively correlated and the line slopes downwards.   

 

The square of the correlation co-efficient (ρ2 or r2) measures the proportion of the variance of 

y which is explained by x.  The greater r2 is, the greater the strength of the linear relationship 

between x and y.  If r2 = 1, then we have a perfect fit.   

 

Example 4: Calculating correlation co-efficient 

Two securities, asset one and asset two, have standard deviations of 0.05 and 0.15 

respectively, and a co-variance of –0.002. Find their correlation co-efficient. 

 

Solution 

The correlation co-efficient is: 27.0
15.005.0

002.0

21

12
ρ

σσ

σ





  

 

Note the negative signs. The negative correlation means a negative correlation co-efficient 

and this implies that the regression line slopes downwards. 
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7 Normal distribution table  

 

Table A  

Cumulative Distribution Function for the Standard Normal Random Variable [N(x)] where x ≥ 

0. 

 

The table shows values of N(x) for x ≥ 0.  The table can be used with interpolation.  For 

example:        664.0663.0666.045.0663.042.043.045.0)42.0)4245.0(  NNNN  

 

Note that this table provides cumulative values of probability starting from 0.5, ie it gives the 

cumulative value for the entire distribution from –∞ to (mean plus Z standard deviations).  

The alternative version of the table (Table B below) provides the cumulative value for the 

“upper half” of the distribution only, ie it starts from 0.0 and gives the cumulative value for the 

half distribution from mean to (mean plus Z standard deviations).   

 

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 

0.0 0.500 0.504 0.508 0.512 0.516 0.520 0.524 0.528 0.532 0.536 

0.1 0.540 0.544 0.548 0.552 0.556 0.560 0.564 0.567 0.571 0.575 

0.2 0.579 0.583 0.587 0.591 0.595 0.599 0.603 0.606 0.610 0.614 

0.3 0.618 0.622 0.626 0.629 0.633 0.637 0.641 0.644 0.648 0.652 

0.4 0.655 0.659 0.663 0.666 0.670 0.674 0.677 0.681 0.684 0.688 

0.5 0.691 0.695 0.698 0.702 0.705 0.709 0.712 0.716 0.719 0.722 

0.6 0.726 0.729 0.732 0.736 0.739 0.742 0.745 0.749 0.752 0.755 

0.7 0.758 0.761 0.764 0.767 0.770 0.773 0.776 0.779 0.782 0.785 

0.8 0.788 0.791 0.794 0.797 0.800 0.802 0.805 0.808 0.811 0.813 

0.9 0.816 0.819 0.821 0.824 0.826 0.829 0.831 0.834 0.836 0.839 

1.0 0.841 0.844 0.846 0.848 0.851 0.853 0.855 0.858 0.860 0.862 

1.1 0.864 0.867 0.869 0.871 0.873 0.875 0.877 0.879 0.881 0.883 

1.2 0.885 0.887 0.889 0.891 0.893 0.894 0.896 0.898 0.900 0.901 

1.3 0.903 0.905 0.907 0.908 0.910 0.911 0.913 0.915 0.916 0.918 

1.4 0.919 0.921 0.922 0.924 0.925 0.926 0.928 0.929 0.931 0.932 

1.5 0.933 0.934 0.936 0.937 0.938 0.939 0.941 0.942 0.943 0.944 

1.6 0.945 0.946 0.947 0.948 0.949 0.951 0.952 0.953 0.954 0.954 

1.7 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.962 0.962 0.963 

1.8 0.964 0.965 0.966 0.966 0.967 0.968 0.969 0.969 0.970 0.971 

1.9 0.971 0.972 0.973 0.973 0.974 0.974 0.975 0.976 0.976 0.977 

2.0 0.977 0.978 0.978 0.979 0.979 0.980 0.980 0.981 0.981 0.982 

2.1 0.982 0.983 0.983 0.983 0.984 0.984 0.985 0.985 0.985 0.986 

2.2 0.986 0.986 0.987 0.987 0.987 0.988 0.988 0.988 0.989 0.989 

2.3 0.989 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.992 

2.4 0.992 0.992 0.992 0.992 0.993 0.993 0.993 0.993 0.993 0.994 

2.5 0.994 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 

2.6 0.995 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 

2.7 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 

2.8 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 

2.9 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 

3.0 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

3.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

3.2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 

3.3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

3.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
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Table B 

Cumulative Distribution Function Z for the Standard Normal Random Variable [N(x)] 

 where x ≥ μ. 

 

The table shows values of N(x) for x ≥ μ.  The table can be used with interpolation.   

 

The values in this table should be equal to the values in Table A less 0.5.  There are small 

differences due to rounding.   

 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4982 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

 


