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Abstract

Beta is a widely used quantity in investment analysis. We review the common interpretations that are applied to beta in
finance and show that the standard method of estimation – least squares regression – is inconsistent with these
interpretations.

We present the case for an alternative beta estimator which is more appropriate, as well as being easier to understand
and to calculate. Unlike regression, the line fit we propose treats both variables in the same way. Remarkably, it provides a
slope that is precisely the ratio of the volatility of the investment’s rate of return to the volatility of the market index rate of
return (or the equivalent excess rates of returns). Hence, this line fitting method gives an alternative beta, which corre-
sponds exactly to the relative volatility of an investment – which is one of the usual interpretations attached to beta.
� 2006 Elsevier B.V. All rights reserved.
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1. Clearing up some basics

In the world of finance the term ‘beta’ refers to
the slope in a linear relationship fitted to data on
the rate of return on an investment and the rate of
return of the market (or market index). This usage
stems from Sharpe’s (1963) paper in Management
Science where he actually used the Roman letter B
rather than the Greek b. (Strictly speaking, in statis-
tics Roman letters refer to measured or estimated
values based on a sample of data, whereas Greek
symbols refer to the true, but unknown population
values.)
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The relationship is usually stated in one of two
forms:

Ri ¼ aþ bRm; ð1Þ
where Ri represents the rate of return on an invest-
ment (e.g. in percentage terms), and Rm is the rate of
return on the market or an index of the market. As
it stands, (1) is the equation of a line fitted to the
data, with a and b being the intercept and slope of
that line; an error term will be required when refer-
ring to particular data points.

It is well worth stressing that verbal explanations
of beta are often incorrect and give the wrong
impression. For example, the head of investment
funds at Cazenove Fund Management in an article
explaining various risk measures, makes the usual
mistakes: ‘‘if a stock has a beta of 1.5 and the mar-
.
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ket rises by 1%, the stock would be expected to rise
by 1.5%’’ (Minter-Kemp, 2003). This is wrong on
two counts: firstly, it should be referring to a change
in the rate of return of the market – not changes in
the index itself, and secondly, it should refer to a
change in the stock’s rate of return, not in its price.
Sadly, such careless wording sometimes appears
in textbooks too (e.g. Hirschey, 2001, p. 540).
Lindahl-Stevens (1978) provides further examples.
In fact, on a graph with Ri on the vertical axis versus
Rm on the horizontal axis, if the market rises by 1%
then this will merely refer to a single point on the
graph and so there is no slope to be measured! To
estimate beta one needs (at the very least) two data
points. Each data point refers to rates of return over
a time interval, say t to t + 1. Hence to estimate the
slope one needs measurements over at least two time
intervals, say t to t + 1 and t + 1 to t + 2, which
implies knowledge of stock and index prices at three

points in time. The incorrect explanation gives the
impression that only two points in time are needed
to understand beta.

The other form of the linear relationship deals
with ‘excess returns’ i.e. the rate of return above
and beyond that which is available from a risk-free
investment such as lending to the government:

Ri � rf ¼ aþ bðRm � rfÞ; ð2Þ
where rf is the rate of return of the risk-free asset.
An excess return is sometimes called a ‘risk pre-
mium’. The line associated with (2) is called the
characteristic line for that investment.

If we re-plot our graph and replace the variables
by excess rates of return, then each original point
will have each of its coordinates reduced by rf. How-
ever, this does not mean that all points will have
been shifted by the same amount. This is because
the risk-free rate is not always the same: when this
rate changes, then subsequent data points will be
shifted by a different amount. Consequently, esti-
mates of beta from these two equations will not be
identical. According to Bodie et al. (2002, p304),
most commercial providers of beta data do not
use the excess return form.

2. Standard beta

The standard textbook way of estimating beta
uses ordinary least squares (OLS) regression with
the left-hand side of (1) or (2) as the dependent var-
iable. The resulting slope can be expressed as

b ¼ rri=rm; ð3Þ
where the r’s are the standard deviations of the
rates of return and r is the correlation between the
rates of return. We shall refer to this as ‘standard
beta’. An equivalent formula is the ratio: (covari-
ance between market and investment returns)/(vari-
ance of the market returns).

This method of estimation makes the important
assumption that the independent variable (market
return) does not have any error associated with it.
If one is using a market index as a proxy for the
market (as in the capital asset market model,
CAPM) then there will be error present. This is
called the errors in variables problem or benchmark
error. Note that simply moving from an index such
as the Dow Jones Industrial Average (only 30
stocks) to a broader index such as the S&P500
hardly dents this problem since the ‘market’ in
CAPM refers to the universe of all investments,
which includes foreign equities, bonds, land, prop-
erty, gold, derivatives, foreign currencies etc. In fact,
it was part of Roll’s (1977) famous critique of
CAPM that it was not a testable theory unless we
know the exact composition of the market portfolio.
Whilst there are estimation methods for dealing
with measurement error in the independent variable,
they require knowledge about the variance of the
error – and this is simply not known. What can be
said however is that the resulting betas would have
a higher value than standard beta. This underesti-
mation is true for the usual case of positive values
of beta; if beta were negative then the measurement
error estimator would be even more negative. Thus,
in general, the correction arising from the bench-
mark error will move the beta estimates further
away from zero.

Let us suppose that we are not using the market
index as a proxy and that we are quite content to
relate our returns with those of our chosen index
as benchmark. Regression models minimize the
sum of squared errors in the dependent variable
only – this is because the purpose of regression is
to fit a relationship for predicting the dependent
variable (rate of return of the investment) for a sta-
ted value of the explanatory variable (the market
rate of return). Statisticians might however be sur-
prised to learn that betas are not widely used for
such a purpose! It thus makes sense to survey the
common uses of beta in finance and see if the least
squares estimator is ever appropriate. We shall do
this in the remainder of this paper and we will argue
that the widely used least squares estimator is
inappropriate.
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3. Beta used to apportion risk to the market

In general, the linear relationship with the market
returns (1) will not be perfect: most points will not
lie on the line and so there is an error term (e) to
consider:

Ri ¼ aþ bRm þ e: ð4Þ

The term bRm is supposed to represent the part of
the return which is explained by market variations,
and the error term accounts for non-market varia-
tions. This seemingly plausible decomposition is
very likely untrue – we need to be more careful:
We have made a huge assumption in thinking that
the relationship between Ri and Rm is a nice straight
line. If a non-linear relationship were fitted the error
term would no doubt be lower, this is quite simply
because nonlinear relations are obviously more flex-
ible and can get closer to the data. As a result of the
better fit the variation attributed to the market
would then be higher and the remaining ‘non-mar-
ket’ variation lower. Hence the relative attribution
(‘sharing out the risk’) into market risk and invest-
ment-specific risk is highly dependent on the func-
tional form of the underlying model that is chosen.

But that is not the only problem with this appor-
tionment. Let us play along for a while longer and
assume the relationship with market rate of return
is truly linear. The argument for decomposition of
risk into market risk (also known as systematic risk)
and investment-specific risk (unsystematic risk) runs
as follows. Let ‘var’ denote variance, then assuming
the terms on the right-hand side of (4) are uncorre-
lated, we have:

varðRiÞ ¼ varðaÞ þ varðbRmÞ þ varðeÞ ð5aÞ

we are then told that ‘‘a and b are constant’’
from which it follows that var(a) = 0, and
var(bRm) = b2 var(Rm) hence

varðRiÞ ¼ b2varðRmÞ þ varðeÞ
¼ market riskþ investment-specific risk:

ð5bÞ

This shows beta’s role in apportioning risk. ‘‘For
very well diversified portfolios, non-systematic risk
tends to go to zero and the only relevant risk is sys-
tematic risk measured by beta’’ (Elton et al., 2003).
Thus the term containing beta is also called the non-
diversifiable risk.

The trouble with the above argument lies in the
assumptions: the fact is that beta (and therefore
alpha) are not constant – this effectively destroys
the above derivation. (For example Hirschey
(2001, p. 546) shows that for Dow Jones stocks
the correlation between current year betas and pre-
vious year betas is only 0.34. Chawla (2001) reviews
the literature on beta stability and uses hypothesis
tests to demonstrate instability.) If betas were con-
stant then we could look them up for any particular
stock in some Eternal Beta Bible knowing that the
value we found would be true for all time. In fact,
it is precisely because they are changing that there
is a demand for ‘beta books’ which is catered to
by data providers such as Value Line Investment
Survey, Bloomberg, Standard and Poor’s, Ibbotson
Associates and the Risk Measurement Service of
the London Business School. The literature tells
us of a tendency for standard betas values to
approach the value of unity over time. As a result
there have been attempts to capture this tendency.
These include Blume’s (1975) beta (a weighted aver-
age of standard beta and one) and Vasicek’s (1973)
beta (a weighted average of standard beta and the
average beta for a sample of stocks). Shalit and
Yitzhaki (2002) discuss the instability of OLS esti-
mators of beta, and blame the quadratic loss func-
tion which makes extreme observations have a
magnified effect. They propose the use of a coeffi-
cient to represent the investor’s risk aversion. Mar-
tin and Simin (2003) also focus on the effect of such
outliers, and observe that the effect is particularly
noticeable for small firms. They recommend using
a weighted least squares estimator where the
weights are determined by the data. Other models
which specifically aim to capture the time-variation
of beta have been developed, see Faff et al. (2000)
for a comparison.

Fabozzi and Francis (1978) investigated 700
stocks on the New York stock exchange and found
that ‘‘many stocks’ betas move randomly through
time rather than remain stable as the ordinary least
squares model presumes’’. They demonstrate that
the partitioning of risk ‘‘will be confounded with
the noise from the shifting beta. As a result it will
not be possible to estimate empirically the separate
effects of systematic and unsystematic risk. . .this
particular implication undermines too many empir-
ical studies to list here’’.

In conclusion, the fact that beta values change
means that the standard apportioning of risk into
market risk and diversifiable risk as derived above
((5a) and (5b)) is flawed, because the derivation
assumes a constant beta.
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4. Beta as relative volatility

We shall now show that the standard interpreta-
tion of beta is not consistent with the formula used
to estimate it. This is extremely important because
many financial decisions are being made daily by
analysts using this interpretation.

Volatility is measured in the financial context by
the standard deviation of the rates of return, and is
often used as a measure of risk. Hence, if we wish to
compare the volatility of an investment’s rates of
return with the volatility of the market rates of
return then one would expect to simply use the ratio

ri=rm ¼ relative volatility or volatility ratio: ð6Þ

Logical, yes, but disappointingly it is not this ratio,
but rather formula (3) i.e. beta, that according to
textbooks is supposed to give us the relative volatil-
ity: ‘‘Beta measures the volatility of a given asset rel-
ative to the volatility of the market’’ (Levy, 2002);
‘‘Beta measures how volatile a fund has been com-
pared with a relevant benchmark’’ (Hirschey,
2001). Sharpe (the originator of this financial statis-
tic) et al. (1999, p. 183) make the same interpreta-
tion: ‘‘Stocks with betas greater than one are more
volatile than the market and are known as aggressive
stocks. In contrast, stocks with betas less than one
are less volatile than the market index and are
known as defensive stocks’’. Yet, one look at Eq.
(3) shows us that standard beta is not the same as rel-
ative volatility, (6). There is something inconsistent
here. If an investment had the same risk (volatility,
ri) as the market then its volatility ratio would equal
unity, but standard beta would not equal unity. In-
stead, its beta value would, from (3), equal its corre-
lation with market returns, and hence would always
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Fig. 1. Relative volatility: The dashed line shows the excess returns of th
excess returns of AT&T, which is clearly more volatile, yet its beta is on
the index. Data: 60 months ending January 2000.
be less than unity. Hence, the usual classification
into aggressive and defensive stocks falls apart if
one is using these terms to refer to relative volatility.
The formula for standard beta (3) confounds (mixes
together) relative volatility and correlation. There-
fore, a low beta could actually represent a high rela-
tive volatility that is being masked by a low
correlation. Investors would then be mistaken in
thinking that they had selected an investment whose
volatility was low. For example take a look at Fig. 1.

Fig. 1 compares a monthly time series plot of
AT&T’s excess returns with those of the S&P500
Index over the same five-year period. From the
graph, one can see that AT&T (a telecom stock) is
more volatile than the index. Yet the beta value
for AT&T over this period is actually 0.75, and
since this is less than unity this statistic gives the
impression that this stock is less volatile than the
index. One can understand how this arises when
one is informed that the correlation is only about
0.32. One can now deduce the relative volatility
(6) as b/r = 0.75/0.32 = 2.34. This being in excess
of one is in agreement with our intuition when look-
ing at the graphs. On repeating the analysis with the
30 stocks making up the Dow Jones Industrial
Average, one finds that half of them had standard
betas less than unity. Since any index is essentially
a weighted average of its components, basic statis-
tics tells us that we would expect it to be less vari-
able than its components (central limit theorem),
not more so. It is strange that analysts accept
unquestioningly claims that so many stocks are less
volatile than the market as a whole.

Camp and Eubank (1985) observed that many
investors do not hold well-diversified portfolios,
and so for them market risk is an incomplete risk
- - - - S&P       ____ AT&T

e S&P500 index over a period of five years. The full line shows the
ly 0.75, a value which gives the impression that it is less risky than
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measure. So they suggested use of the ratio of stan-
dard deviations (6) – which they called ‘beta quo-
tient’ - as a measure of risk. ‘‘Because beta fails to
consider unsystematic/diversifiable risk. . . the
authors propose a risk measure that takes into
account total variation of return relative to overall
market variation’’. ‘‘The return performance of a
portfolio should be evaluated on the basis of its beta
quotient instead of its beta, since it is bearing diver-
sifiable risk in addition to its systematic or non-div-
ersifiable risk’’.

5. Beta in CAPM

The security market line is a linear relation that is
fitted to data on average excess returns of a number
of assets (dependent variable) and their standard
beta values (explanatory variable). Since beta is here
being used as a measure of risk, there is an expecta-
tion that higher beta stocks will have higher returns.
The parameter values (slope and intercept) of this fit-
ted line have been used to test the CAPM theory. A
famous study by Fama and French (1992) showed
that the slope was not significantly different from
zero i.e. there was no positive association between
return and standard beta. However, there are other
researchers who disagree with these findings. Roll
and Ross (1992) claim that the choice of market index
that is used to estimate beta can affect such conclu-
sions. This is the errors-in-variables problem: since
there is error in our measurement of the ‘‘market’’
return, this will affect the estimate of the slope (beta).
OLS only assumes error in the dependent variable.

One can prove (e.g. see Elton et al., 2003, p. 358)
that if the explanatory variable has a random error
and even if the mean of the errors is zero, this will
still lead to a slope estimate in the security market
line which is too low (downward biased). This in
turn implies that the estimate for the intercept will
be too high (because the line must always pass
through the point of means).

It would therefore seem desirable to: (i) estimate
beta in a way that allowed for measurement error in
the variable which is chosen as a proxy for market
return, and (ii) estimate the security market line in
a way which allowed for error in the explanatory
variable.

6. Alpha as a risk-adjusted performance measure

Betas often play a part in the construction of
risk-adjusted measures of performance. These mea-
sures are subsequently used for ranking the desir-
ability of investments. The idea is that if two
investments have the same total returns, we should
prefer the one that has been less volatile. One some-
times sees discussions in the financial press that
mention a fund manager’s alpha. This is not a part
of their anatomy. It is used as a measure of perfor-
mance that takes into account the level of risk (as
measured by beta) that has been taken. To see this,
take a look at Eq. (1): the return produced by an
investment is split into two parts. One part (bRm)
shows the return attributable to market changes
for the level of risk (b) taken on. The other term
(a) is unrelated to market movements and is inter-
preted as being the return attributable to the fund
manager’s skill (or luck). Hence positive alpha is
often used as a hallmark for investor talent. For a
given set of data, the way we estimate b will have
an effect on the consequent value of a: if we under-
estimate beta, then we shall overestimate alpha. If
the arguments in the next section are to be believed
then that is precisely what has been done in the past:
beta (risk) has been underestimated, and conse-
quently the skill of fund managers has been overes-
timated. This is not something that applies
uniformly to all investment managers i.e. their alpha
scores will not merely be shifted such that their
rankings stay unchanged, rather, the new alphas will
rank managers in a completely different order.1
7. A way forward

We have looked at various roles that beta has
been given and found that the standard method of
estimating beta has shortcomings. Let us return to
the beginning and see if we can do things differently.
We start with a set of points on our graph with
investment rates of return on the y-axis and market
rates of return on the x-axis. The following argu-
ments are unaltered if excess rates of return are
used. We want to plot a straight line and estimate
the slope of this line. Previously, we used ordinary
least squares (OLS) regression. But wait, there are
two regression lines! The OLS line minimizes the
sum of squared deviations in the y-direction. The
reverse regression line minimizes in the x-direction.
If our purpose is predicting y for a specified x-value,
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statisticians will advise use of OLS regression. If our
purpose is to predict x for a specified y-value we are
advised to use reverse regression. However none of
the usual interpretations for beta that we have dis-
cussed includes either of these purposes. What we
in fact require is the slope of the functional relation-

ship between x and y. As Kendall and Stuart
emphasise in their classic statistics text (1979, p.
402): ‘‘A regression line does not purport to repre-
sent a functional relation between mathematical
variables or a structural relation between random
variables’’. Many practitioners and researchers –
even statisticians – often forget this; they inadver-
tently slip into thinking that their OLS model esti-
mates the underlying relationship between
variables. This probably arises because methods
for fitting functional relations do not usually appear
in current statistics textbooks, and so students are
not aware of the fact that there are other ways of fit-
ting lines to data.

One basic fact from statistical theory is that the
slopes of the two least squares regression lines
bracket the slope of the estimated functional line.
This is to be expected since the ordinary regression
line is estimated by minimising all the variation in
one direction and the reverse regression minimises
all the variation in the other. Booth and Smith
(1985) therefore suggested using the two regression
estimates as bounds on the true value.

We now have upper and lower limits for the slope
but which value shall we settle upon? A sensible
approach is to choose one that carries with it those
roles that beta has been used for in the past that
have not been put into question. Let us consider
the relative volatility role (volatility relative to the
market). We said earlier that a more logical estima-
tor for this purpose would be the ratio of standard
deviations (6). Since this is always positive we need
to attach a sign. This will be given by the correla-
tion; this ensures that we can also deal with down-
ward sloping characteristic lines. We now
investigate this alternative estimator of beta, denot-
ing it by b*.

b� ¼ ðsign of rÞri=rm ð7Þ

or the equivalent form which uses the standard devi-
ations of the excess rates of return. The connection
with the standard OLS beta is apparent from (3):

b� ¼ b=r: ð8Þ

Does this estimator lie between the two regression
slopes as required? The reverse regression slope is
given by b/r2. (Incidentally, this shows how large
the differences in regression estimates can be: a cor-
relation of 0.71 implies that reverse regression has a
slope twice as high as the standard regression!) Since
b* equates to b/r and since r lies between �1 and +1
it follows that our proposed estimator does satisfy
the requirement of lying in between. For the usual
case of positive correlation between market and
the investment, we have the standard beta giving
the lowest value and the reverse regression the high-
est, so we have:

b 6 b� 6 breverse: ð9Þ

The equalities hold only when there is perfect corre-
lation in the data. This is as one would expect, as
then all points lie exactly on a straight line and so
there can be no disagreement on where the line
should be.

Does this new slope estimator correspond to an
established line fitting procedure? In fact it does: it
is precisely the geometric mean functional relation-
ship (Draper and Smith, 1998). Its name refers to
the fact that the slope is the geometric mean of
the slopes from the two least squares regressions:
i.e. multiply those slopes and take the square root.
This also implies that its value lies between the
ordinary and reverse regression slopes. This line
also passes through the centroid of the data i.e.
the point whose coordinates are the mean values
of the plotted variables. This is the only point which
all three lines pass through.

Another point in favour of our estimator is its
symmetric functional form. If we had only two data
points we would estimate the slope as ‘‘(rise in y)/
(rise in x)’’; notice that this treats changes in the
y-variable in the same way as changes in the x-var-
iable. The volatility ratio, Eq. (6), maintains this
symmetry in the treatment of the two variables.
However the equation for standard beta (3) does
not – one need only inspect the formula for correla-
tion to see this.

Is this line optimal in any way? Yes it is, and
what is more it is optimal in a way that involves
both the vertical and horizontal deviations from
the line. In fact it minimizes the sum of products
of these deviations. This is equivalent to saying that
it is the line that minimizes the sum of the areas of
the triangles made by the points and the line (see
Fig. 2). This was proved by Woolley (1941). From
this it follows that the estimated relationship
between the two variables will be the same irrespec-
tive of which variable is plotted on each axis i.e.



Fig. 2. The geometric mean functional relation is the line that minimizes the sum of the triangular areas defined by the points and the line.
The slope (b*) of such a line is precisely the ratio ry/rx and since the line passes through the centroid of the data it follows that the equation
of the line can be written as: y � �y ¼ b�ðx� �xÞ. For more details as well as extensions to multiple variables, see Tofallis (2002a,b, 2003).
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there is symmetry of treatment: each variable is trea-
ted with equal importance. This is just how we
would want to treat variables if we were aiming to
discover an underlying relationship between them.
Table 1
If we rank the 30 companies making up the Dow Jones Industrial Ave
standard beta, we observe large differences

Company b b*

Intel 1.08 2.78
Hewlett-Packard Co. 1.28 2.69
Alcoa Inc. 1.13 2.58
Microsoft 1.45 2.56
Citigroup Inc. 1.67 2.37
AT&T Corp. 0.75 2.37
IBM 1.03 2.20
Caterpillar Inc. 0.88 2.15
Walmart 1.15 2.14
International Paper Co. 1.10 2.12
Philip Morris Cos. Inc. 0.55 2.04
Home Depot Inc. 0.97 2.02
Coca-Cola Co. 1.07 2.01
Merck & Co. Inc. 0.86 1.97
United Technologies 1.49 1.97
Boeing Co. 0.89 1.91
Disney 0.78 1.91
Honeywell International 1.14 1.89
General Motors Corp. 0.93 1.85
American Express Co. 1.34 1.83
Du Pont de Nemours 0.83 1.80
J.P. Morgan Chase & Co. 1.15 1.74
SBC Communications 0.82 1.72
3M 0.62 1.66
Johnson & Johnson 0.96 1.64
McDonald’s Corp. 0.81 1.64
General Electric Co. 1.22 1.62
Eastman Kodak Co. 0.29 1.59
Procter & Gamble Co. 0.84 1.56
Exxon Mobil Corp. 0.50 1.11

Notice how technology companies Intel, IBM and AT&T now appear r
to believe. Calculations based on 60 months ending January 2000.
To compare values of the proposed estimator
with standard beta refer to Table 1. Notice how,
as well as the new values being higher, the relative
risk rankings are also now quite different.
rage according to the proposed estimator and then according to

b* Rank b Rank Difference in ranks

1 12 11
2 5 3
3 10 7
4 3 �1
5 1 �4
6 26 20
7 14 7
8 19 11
9 8 �1

10 11 1
11 28 17
12 15 3
13 13 0
14 20 6
15 2 �13
16 18 2
17 25 8
18 9 �9
19 17 �2
20 4 �16
21 22 1
22 7 �15
23 23 0
24 27 3
25 16 �9
26 24 �2
27 6 �21
28 30 2
29 21 �8
30 29 �1

elatively much riskier than their standard betas would have led us
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Draper and Smith (1998, p. 92) have started to
promote the use of this line in the latest edition of
their book on regression, but are unaware that
one can also establish relevant confidence intervals.
Kermack and Haldane (1950) demonstrated that the
formula for the variance of our estimator can be
approximated by that for the OLS case, i.e. the var-
iance of the slope is

s2 ¼ b�ð1� r2Þ=ðn� 2Þ; ð10Þ
where n is the number of data points.

A confidence interval can be constructed in the
usual way using the Student’s t-distribution: b* ± ts.

An exact form for the confidence interval due to
Jolicoeur and Mosimann is given in Ricker (1984),
namely:

b�½ðBþ 1Þ1=2 � B1=2�; ð11Þ
where B ¼ t2ð1� r2Þ=ðn� 2Þ.

What can we say about the stability of the pro-
posed beta estimator? Francis (1979) looked at sta-
bility from the point of view of the different parts of
the formula for standard beta (see Eq. (3)). He
found ‘‘explicit evidence pinpointing each stock’s
correlation with the market as the most unstable
statistic within beta’’. His conclusion is that ‘‘the
correlation with the market is the primary cause
of changing betas. . . the standard deviations of indi-
vidual assets are fairly stable’’. This bodes very well
for our estimator since it differs from standard beta
in precisely not including the correlation between
the investment and the market. Hence we expect it
to be more stable over time. As a small test we
looked at stocks in the Dow Jones Industrial Aver-
age calculating their standard betas for the period
1989–1994 and comparing them with those of
1995–2000. The absolute percentage change ranged
from 1% to 100%, with a mean change of 23%.
When this comparison was done using b*, the
change ranged from 0.3% to 45% with a mean
change of only 15.7%. So we have some preliminary
evidence that b* is more stable in time.

8. Conclusion

A key message of this paper is that OLS regres-
sion lines are not intended to represent an underly-
ing relationship between two variables. Sadly, this
misconception is one that is widespread. Rather,
regression lines are intended for predicting the value
of a dependent variable for a given value of an
explanatory variable. If you switch the variables in
an OLS regression you produce a different line,
and so you do not have a unique relationship. This
confusion between functional relationships and
regressions can be traced back to Sharpe’s seminal
1964 paper. When speaking of a plot of the rate of
return on an asset (Ri) versus the rate of return on
an efficient ‘combination’ of assets (the market port-
folio), he says (p. 438): ‘‘Part of the scatter of Ri is
due to an underlying relationship with the return
on the combination, shown by B, the slope of the
regression line’’. [Our italics.]

In an effort at estimating a unique underlying
relationship, we therefore proposed a fitting tech-
nique which treated both variables on an equal foot-
ing. The resulting line is variously referred to in
statistics as the geometric mean functional relation
or the reduced major axis. It is optimal in the sense
that it is a ‘least areas line’, see Fig. 2. The magni-
tude of its slope, b*, is precisely the ratio of volatil-
ities (standard deviations) and so we can now
accurately refer to it as ‘relative volatility’. This
slope value lies between the slope values arising
from ordinary regression and reverse regression.
The only difference between its calculation and that
from OLS is that its formula does not contain the
correlation. Since it is the correlation that has been
found to be the main contributor to instability in
betas (Francis, 1979) we expect that b* will be more
stable over time, and indeed we gave some prelimin-
ary evidence for this. Furthermore, the removal of
the correlation from the formula brings clarity to
what is being measured – there is no longer the con-
founding of two quantities: relative volatility and
correlation. There is also a computational advan-
tage in that it is easier to calculate the ratio of stan-
dard deviations than the OLS slope.

Our estimator is a measure of total risk and so it
can be applied to all portfolios – whether they are
diversified or not. A consequence of this, of course,
is that it cannot play a part in splitting up risk into
components (market risk and investment-specific
risk). It must be stressed however that standard
beta’s claim to measure market risk is highly ques-
tionable – as we demonstrated the difficulty is pri-
marily due to the instability of beta over time.
Fabozzi and Francis (1978) make this point most
emphatically:

‘‘After Markowitz and Sharpe suggested estimat-
ing the beta systematic risk coefficient for market
assets, finance professors, stock brokers, invest-
ment managers, and others began expending
large quantities of resources each year on esti-
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mating betas. Unfortunately however, it appears
that the ordinary least squares regressions used in
nearly every instance may be inappropriate’’.

For any given data set the absolute value of our
proposed estimator b* will be higher than that of
standard b. From this it follows that alpha values
will be revised downwards (since the line will always
pass through the centroid point-which can be viewed
as a fixed point of rotation). An important implica-
tion is that if the new alpha is used to rate investment
managers or funds then there will be fewer of them
with the much sought after positive alpha.

Very importantly, the proposed estimator for
beta finally allows for consistency between its stan-
dard interpretation (as relative volatility) and the
formula used for its calculation. This gives an alter-
native, and we would argue a more logical classifica-
tion of stocks as being either aggressive or defensive.
One dreads to think of the fortunes that have been
invested on the basis that beta values were inter-
preted as meaning investments were less volatile
than the market when in fact they were nothing of
the sort.

We end with a few wise words of advice:

Before deciding what straight line to use, you
must decide what you want it for. Do you wish
to estimate (predict) one quantity from another,
or do you want a descriptive trend line relating
two sets of observations. (Ricker, 1984)

In the light of this we need to critically review past
research as well as current decision-making which is
based on inappropriate statistical analysis because:

OLS continues to be by far the most frequently
used method even when it is obviously inappro-
priate. As a result, hundreds if not thousands
of regression lines with too-small slopes are being
published annually. (Riggs et al., 1978).
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